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Detection of Argon in Lunar Atmosphere

 Argon was detected by LACE, a
mass spectrometer deployed at ".g\
lunar surface during Apollo 17 , -
mission (1972). //j//
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 LACE measured only flux of
downcoming particles, so
concentration can be retrieved
only if one assumes a Maxwellian
distribution:

¢ = n<v>/4 (Hodges 1973)

* Fig. 1: the LACE mass
spectrometer was deployed at
the lunar surface at ~22° N
during Apollo 17 mission.
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Detection of Argon in Lunar Atmosphere

Argon concentration showed short-term variations, but an overall decrease of

argon atmospheric density during the 9 lunations was observed.
Concentration is related to the photo-ionization rate :
¢ = 4.4x10% x n atoms s (Hodges & Hoffman 1974)

sunrise

Fig. 2: The photo-ionization rate of Argon ,which is a proxy for the density of Argon
at LACE position (22° N)
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Detection of Argon in Lunar Atmosphere

* Night side profile show pattern of a condensable gas.
* Argon density 4 months later is 2.7x smaller.

* Fig. 3: diurnal profile of argon density measured by LACE during two different lunations.
Sunset is at 90° longitude, midnight is at 180° longitude, and sunrise is at 270°
longitude. The lower curve was measured 4 months later than the higher curve.
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LRO-LAMP’s Recent Non-detection of
Argon in Lunar Exosphere

* Subsequent attempts to detect argon in lunar exosphere by remote-sensing did not
give positive results (see Fig. 4).

* Fig. 4: lunar spectrum by Flynn 1998 where a slight emission from Ar 1048 A line is
apparent. Subsequent studies by the same group (Parker et al., 1999) revealed this

emission not to be reallstlc
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* Last upper limit from Cook et al. 2013 is 2.3x10* cm™3. LAMP provides a 1.5 times
lower upper estimate than from previous observations.



Origin of Argon in Lunar Atmosphere

Why Argon is important?
Because, contrary to 3°Ar, °Ar
comes from radiogenic decay of
40K within the interior (Hayman
& Yaniv 1970, Manka & Michel
1971).

It is a truly native elements of
lunar interior.

Argon behavior might resemble
that of other volatiles on the
Moon.

A simulation has been
performed to study transport,
losses, and storage of Argon to
the cold traps.

Fig. 5: various processes that
lead to loss or storage of Argon
in cold traps.
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Argon simulation:

* 3D Monte Carlo particle approach as used in Leblanc & Chaufray, 2011,
* Onesingle ejection at the beginning (simulating e.g. moonquake);

* Follows the trajectory of particles until annihilation or implantation to cold
traps;

* Particles thermalize with the surface. Therefore, the accommodation factor, a,
is equal to 1: a:[Eout_Einj_l
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Fig. 6: our approach for tracking the ballistic hops and accommodation of particles to the
surface is similar to the model of Smyth and Marconi [1995].
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Argon simulation: Temperature map

Our code utilizes a LRO/Diviner Temperature map as representative of the diurnal
pattern. This is an improvement over previous analytical approaches, especially to
simulate Permanently Shaded Surfaces (PSRs).

Once a particle sticks to the surface, it resides for some time before being ejected..

The residence time is taken from Hodges 1982:t,. z%exp(—Q'RA%m)

with Q activation energy (cal mole?) and C a constant (s K2); 4.18 takes into account
the conversion calories — Joule and R is the gas constant.

ston calort Toveant gl

Fig. 7: the average surface
temperature is taken from
LRO/Diviner radiometer. Rotation
of the Moon is taken into account.
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Argon simulation — initial run, to reach steady
state.

Qactiv = 6600; prod = 1.2d29 ato
T T T T T T T T T T T ‘ T T T

ms; simul. time 1680 hours
‘ ‘ T T T T ‘ T T

* First time we run the code, 107
we do not include losses, in
order to reach steady state.

 We play with Q and C until
we find a good agreement
with initial measurement of
LACE (green line in fig. 8).

 We then adjust the
Production.

* Our best parameters are:
Qactiv = 6600 cal molel; C |
= 5x10® s K?; Production = 107 sunrise/sunset = 2.23
1.2x102%° atoms.
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Argon simulation: fitted residence time

107 -
5 ook + Fig. 9: residence time for
¢ o © temperatures typical of cold traps,
c calculated using our fitted
= 107 .
- parameters Q and C.
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With the parameters we found (Q = 6600 cal mole! and C = 5x10° s K2?), the temperature
required to retain Argon for 1 Gyr is 56 K.



Argon
Simulation:
global
distribution

Qactiv. = 6600; prod = 1.2d29 ato
T T T T T T T T T T T ‘ T T T

ms; simul. time 1680 hours
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Argon Code: Including solar wind losses

Qactiv = 6600; prod = 1.2d29 ato
-

ms; simul. time 4584 hours
105 T T LI T T

Next, we included solar wind losses.

Solar UV photo-ionization is the dominant loss
process.

Charge-exchange with solar wind protons is the
next most important process.

Mean lifetime for these combined processes is
1.5x108 s [Manka & Michel 1971]

We recycled 10% of the Ar* photo-ions into
neutral Ar [Hodges & Hoffman, 1975] instead
of 50% used by Manka & Michel [1971]. 102

The solar wind loss is not enough to reproduce
the observed decrease after 120 days. B

Other processes are required: cold trapping. ) T A R S T A R
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Fig. 11: top: argon density after 120 days of

steady state (black asterisks) does not reach photo—ionization rate
the observed argon density after the same O O ==
amount of time (red line). Bottom: the photo- .
ionization rate as a function of time. The curve 2.5x10% ¢
is initially zero because the simulation has to B g
reach first the steady state; then there is an » 2.0x10%" ¢
increase which is not real but an effect of the e f
simulation; the peak and the final decrease is a S 1.5x10%'F
real effect, and reflects the fact that less and e i
less argon atoms are available for ionization. . 1.0x10%'F
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Argon Code: solar wind losses + cold traps

*  We add the cold trapping to regions at the poles.

*  Cold traps are simulated as regions, at both poles,
where a particle is removed from the simulation as

soon as it impinges upon one of them; ooty = BOUE prod = 1.Zel) eomiss Simul Mime 4oek InovTe

*  The number of these regions is increased until we
find an agreement with the observed argon density
after 120 days (red line in fig. 12) Lot

*  Our preliminary results show that loss of argon
atoms by cold-trapping is ~2.5 times faster than
solar wind losses: 7.5x102 atoms s!
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*  Atotal of 9.6x10% argon atoms is trapped in 4
months, corresponding to 6.4x103 kg.
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*  Area of estimated cold traps is 0.26% of total lunar
area. This is higher than the area of PSRs.
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* fig. 12: when we add a certain amount of cold traps 10l
(0.26% of lunar surface, in this case), together with o Lomgitudes (dagrees from subsolar point) o0
the loss by solar wind processes, we find an
agreement with the observed argon density (red
line) after 4 months from the initial measurements
(green line).




Preliminary conclusions and future steps

Preliminary results shows that cold-trapping flux is ~2.5x higher than loss by
photo-ionization and charge exchange. The initial quantity of argon required to fit
the initial observed argon density is 8x103 kg. This quantity can be released
suddenly as a result of a Moonquake or gradually by diffusion; we did not make a
distinction here. After 120 months, the amount of argon stored in cold traps is
6.4x103 kg.

In the future, we plan to:

— investigate non-steady sources (e.g., introduce a varying production rate for
argon atoms);

— Compare the residence time with most recent laboratory results;

— Compare the cold trap area obtained here (0.26% of lunar surface) with the

area occupied by PSRs. This will be accomplished by using several
temperature maps instead of the single one used here;

— Consider long term evolution of argon cold-trapping, applying a space
weathering model, like the one of Crider & Vondrak [2003].

— Calculate brightness of argon line by means of a radiative transfer model and
compare it to published upper limits from LRO/LAMP.
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